Instructions. (30 points) Solve each of the following problems.
($\left.1^{\mathrm{pts}}\right) \quad$ 2. If $\cos x=\frac{3}{5}, \quad \frac{3 \pi}{2}<x<2 \pi$ then $\sin x=$
$\left(1^{\mathrm{pts}}\right)$
$\left(1^{\mathrm{pts}}\right)$

1. $\lim _{x \rightarrow-1} \frac{x^{4}-1}{x-1}=$
(a) -4
(b) Does Not Exist
(c) 4
(${ }^{(1)} 0$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow-1} \frac{x^{4}-1}{x-1} & =\frac{(-1)^{4}-1}{-1-1} \\
& =\frac{1-1}{-2} \\
& =\frac{0}{-2}=0
\end{aligned}
$$

(a) $\frac{-3}{4}$
(b) $\frac{-4}{3}$
(c) $\frac{-5}{4}$
(K) $\frac{-4}{5}$

Solution:

Since $\cos x=\frac{3}{5}=\frac{\text { adjacent }}{\text { hypotenuse }}$ we draw a triangle is shown below:
Now, $H^{2}=A^{2}+O^{2} \Rightarrow 25=9+O^{2} \Rightarrow O=4$. Since $\frac{3 \pi}{2}<x<2 \pi$, then x lies in the forth quadrant. Hence since the $y-$ axis is negative, then $\sin x<0$ and since the x-axis is positive then

3 $\cos x>0$. Hence $\sin x=\frac{-4}{5}$.
3. $\lim _{x \rightarrow \infty} \frac{x-4 x^{3}}{2 x^{3}-1}=$
(a) $\frac{-1}{2}$
(b) ∞
(c) 0
(${ }^{(x)}$) -2

Solution:
Since $\lim _{x \rightarrow \infty}\left(x-4 x^{3}\right)=-\infty, \quad \lim _{x \rightarrow \infty}\left(2 x^{3}-1\right)=\infty$ we have I.F. type $-\infty / \infty$. Divide each term in the numerator and each term in the denominator by the highest power in the
denominator.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x-4 x^{3}}{2 x^{3}-1} & =\lim _{x \rightarrow \infty} \frac{\frac{x-4 x^{3}}{x^{3}}}{\frac{2 x^{3}+1}{x^{3}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{x}{x^{3}}-\frac{4 x^{3}}{x^{3}}}{\frac{2 x^{3}}{x^{3}}-\frac{1}{x^{3}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}-4}{2-\frac{1}{x^{3}}} \\
& =\frac{0-4}{2-0+0}=-2
\end{aligned}
$$

$\left(1^{\mathrm{pts}}\right)$
4. $\sin \left(\frac{7 \pi}{18}\right) \cos \left(\frac{\pi}{18}\right)-\sin \left(\frac{\pi}{18}\right) \cos \left(\frac{7 \pi}{18}\right)=$
(a) $\frac{1}{2}$
(b) 2
(C) $\frac{\sqrt{3}}{2}$
(d) 0

Solution:

$$
\begin{aligned}
\sin \left(\frac{7 \pi}{18}\right) \cos \left(\frac{\pi}{18}\right)-\sin \left(\frac{\pi}{18}\right) \cos \left(\frac{7 \pi}{18}\right) & =\sin \left(\frac{7 \pi}{18}-\frac{\pi}{18}\right) \\
& ==\sin \left(\frac{\pi}{3}\right) \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

(1 $\left.1^{\mathrm{pts}}\right)$ 5. The curve $f(x)=\frac{x^{2}-2 x-3}{x^{3}-9 x}$ has a vertical asymptote at
(a) $x=0, \quad x= \pm 3$
(b) $y=0, \quad y=-3$
(c) $x=0, \quad x=3$
(d) $x=0, \quad x=-3$

Solution:
Write $f(x)=\frac{(x-3)(x+1)}{x(x-3)(x+3)}$. The zeroes of the denominator are $-3,0$, and 3 . To check that $x=3$ is a vertical asymptote or not we take the limit at 3 from both sides. $\lim _{x \rightarrow 3} f(x)=$ $\lim _{x \rightarrow 3} \frac{(x-3)(x+1)}{x(x-3)(x+3)}=\lim _{x \rightarrow 3} \frac{x+1}{x(x+3)}=\frac{4}{18}=\frac{2}{9}$. Hence $x=3$ is not a vertical asymptote. To check that $x=-3$ we take the limit $\lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow-3^{+}} \frac{(x-3)^{+}(x+1)}{x(x-3)(x+3)}=\infty$. Hence $x=-3$ is a vertical asymptote. To check that $x=0$ we take the $\operatorname{limit} \lim _{x \rightarrow 0^{+}} f(x)=$
$\lim _{x \rightarrow 0^{+}} \frac{(x-3)(x+1)}{x(x-3)(x+3)}=\infty$. Hence $x=0$ is a vertical asymptote. Thus the function has vertical asymptote at $x=0$, and $x=-3$.
$\left(1^{\text {pts }}\right)$
6. If

$$
f(x)=\left\{\begin{array}{ll}
x+2, & \text { if } x<-3 ; \\
2, & \text { if } x=-3 ; \\
\frac{x^{3}+27}{x^{2}-9}, & \text { if } x>-3 .
\end{array} \text { Then } \lim _{x \rightarrow-3^{+}} f(x)=\right.
$$

(a) $\frac{9}{2}$
(b) $-\frac{3}{2}$
(c) 0
($\left.{ }^{(}\right)-\frac{9}{2}$

Solution:

Note that when computing limit as $x \rightarrow a^{+}$means you approaches a from the right side that is $x>a$.

$$
\begin{aligned}
\lim _{x \rightarrow-3^{+}} f(x) & =\lim _{x \rightarrow-3^{+}} \frac{x^{3}+27}{x^{2}-9} \\
& =\lim _{x \rightarrow-3^{+}} \frac{x^{3}+27}{x^{2}-9} \quad \text { A direct substation will give us I.F. 0/0 } \\
& =\lim _{x \rightarrow-3^{+}} \frac{(x+3)\left(x^{2}-3 x+9\right)}{(x+3)(x-3)} \text { Factoring } x+3 \text { from denominator and numerator } \\
& =\lim _{x \rightarrow-3^{+}} \frac{(x+3)\left(x^{2}-3 x+9\right)}{(x+3)(x-3)} \\
& =\lim _{x \rightarrow-3^{+}} \frac{x^{2}-3 x+9}{x-3} \\
& =\frac{(-3)^{2}-3(-3)+9}{-3-3} \\
& =\frac{27}{-6}=-\frac{9}{2}
\end{aligned}
$$

7. $\frac{d^{42}}{d x^{42}}(\cos x)=$
(a) $-\sin x$
(b) $\sin x$
(c) $\cos x$
(N) $-\cos x$

Solution:
Since $42=4(10)+2$ then $\frac{d^{42}}{d x^{42}}(\cos x)=\frac{d^{2}}{d x^{2}}(\cos x)=\frac{d}{d x}(-\sin x)=-\cos x$.
$\left(1^{\text {pts }}\right)$
8. If $\frac{x^{2}+2 x}{x} \leq f(x) \leq 3 x+2, \quad x \in[-1,1], x \neq 0$, then $\lim _{x \rightarrow 0} f(x)=$
(a) 0
(b) 2
(c) -2
(d) 1

Solution:
Since $\lim _{x \rightarrow 0} \frac{x^{2}+2 x}{x}=\lim _{x \rightarrow 0} \frac{x(x+2)}{2 x}=\lim _{x \rightarrow 0}(x+2)=2$, and $\lim _{x \rightarrow 0}(3 x+2)=2$, then by The Sandwich Theorem we have $\lim _{x \rightarrow 0} f(x)=2$.
$\left(1^{\mathrm{pts}}\right)$
9. $\lim _{x \rightarrow 0} \frac{\tan ^{3}(2 x)}{x^{3}}=$
(a) $\frac{1}{8}$
(b) 2
8
(d) $\frac{1}{2}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan ^{3}(2 x)}{x^{3}} & =\lim _{x \rightarrow 0}\left(\frac{\tan (2 x)}{x}\right)^{3} \quad \frac{a^{n}}{b^{n}}=\left(\frac{a}{b}\right)^{n} \\
& =\lim _{x \rightarrow 0}\left(\frac{2 \tan (2 x)}{2 x}\right)^{3} \quad \text { make the top similar to the angle } \\
& =\left(2 \lim _{x \rightarrow 0} \frac{2 x}{\tan (2 x)}\right)^{3} \quad \text { Use that } \lim _{x \rightarrow 0} \frac{\tan x}{x}=1=\lim _{x \rightarrow 0} \frac{x}{\tan x} \\
& =(2.1)^{3}=8
\end{aligned}
$$

$\left(1^{\mathrm{pts}}\right)$
10. $\lim _{t \rightarrow 0} \frac{\tan (2 t) \sin t}{t^{2}}=$
(a) $\frac{1}{2}$
(B) 2
(c) 1
(d) -2

Solution:
Direct substation will give us I.F. type 0/0.

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\tan (2 t) \sin t}{t^{2}} & =\lim _{t \rightarrow 0} \frac{\tan (2 t)}{t} \frac{\sin t}{t} \\
& =2 \lim _{t \rightarrow 0} \frac{\tan (2 t)}{2 t} \frac{\sin t}{t} \quad \text { use } \lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=1=\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \\
& =2(1)(1)=2
\end{aligned}
$$

$\left(1^{\mathrm{pts}}\right)$
11. If $y=\frac{\cos x}{1-\sin x}$, then $y^{\prime}=$
(a) $\frac{\sin x}{1-\sin x}$
(b) $\frac{1}{1-\sin x}$
(c) $\frac{-\cos x}{(1-\cos x)^{2}}$
(d) $\frac{\cos x}{1-\sin x}$

Solution:

$$
\begin{array}{rlr}
y^{\prime} & =\frac{(1-\sin x)(-\sin x)-(\cos x)(-\cos x)}{(1-\sin x)^{2}} & \\
& =\frac{-\sin x+\sin x \sin x+\cos x \cos x}{(1-\sin x)^{2}} & \\
& =\frac{-\sin x+\sin ^{2} x+\cos ^{2} x}{(1-\sin x)^{2}} & \\
& =\frac{1-\sin x}{(1-\sin x)^{2}} & \text { Use the fact } \cos ^{2} x+\sin ^{2} x=1 \\
& =\frac{1}{1-\sin x} . &
\end{array}
$$

(1 $\left.{ }^{\text {pts }}\right)$ 12. The graph of the function $F(x)=x^{3}-27 x$, has a horizontal tangent line at
(れ) $x= \pm 3$
(b) $x=3$
(c) $x=-3$
(d) $x=0$

Solution:

$$
\begin{aligned}
F(x) & =x^{3}-27 x \\
F^{\prime}(x) & =3 x^{2}-27=3\left(x^{2}-9\right) \\
F^{\prime}(x) & =0 \\
3\left(x^{2}-9\right) & =0 \\
x & = \pm 3 .
\end{aligned}
$$

$\left(1^{\text {pts }}\right)$ 13. An equation for the tangent line to the curve $f(x)=x^{3}+x \quad$ at $x=1$ is
(a) $y=-4 x-2$
(b) $y=4 x-2$
(c) $y=4 x+2$
(d) $y=-4 x+6$

Solution:

The slope of the tangent line to $f(x)=x^{3}+x$ at $x=1$ is $f^{\prime}(1)$.

$$
f(x)=x^{3}+x \Rightarrow f^{\prime}(x)=3 x^{2}+1
$$

Hence

$$
\text { the slope of the tangent }=f^{\prime}(1)=4
$$

Also $f(1)=(1)^{3}+(1)=2$. Now, we have $m=4$ and $(1,2)$, hence

$$
y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y-2=4(x-1) \Rightarrow y-2=4 x-4 \Rightarrow y=4 x-2
$$

$\left(1^{\mathrm{pts}}\right)$
14. The accompanying figure shows the graph of $y=f(x)$. Then the period of $y=f(x)$ is
(a) 1
(b) 4
(c) 2π

(d) 2

Solution:

From the graph we can see that the function repeat itself every 2 units. Hence the period is 2
$\left(1^{\text {pts }}\right)$
15. If $f(1)=3$, then $\lim _{x \rightarrow 1} f(x)$ must exist.
(a) True
(b) False

Solution:

False. Let $f(x)=\left\{\begin{array}{ll}1, & \text { if } x>1 ; \\ 3, & \text { if } x=1 ; \\ -1, & \text { if } x<1 .\end{array}\right.$ Then $f(1)=3$, but $\lim _{x \rightarrow 1^{+}} f(x)=1 \neq-1=$ $\lim _{x \rightarrow 1^{-}} f(x)$, Hence $\lim _{x \rightarrow 1} f(x)$ does not exist.
16. The accompanying figure shows the graph of $y=$ $f(x)$. Then $f^{\prime}(-2)<f^{\prime}(0)$.
(${ }^{(d)}$ True
(b) False

Solution:

From the graph we can see that the tangent line to the graph of $y=f(x)$ at -2 is falling down (left to right) and hence its slope is negative. Thus, since the first derivative is the slope of the tangent line to the graph at -2 then $f^{\prime}(-2)<0$.

From the graph we can see that the tangent line to the graph of $y=f(x)$ at 0 is rising up (left to right) and hence its slope is positive. Thus, since the first derivative is the slope of the tangent line to the graph at 0 then $f^{\prime}(0)>0$. Now, $f^{\prime}(-2)<0<f^{\prime}(0)$.
(1 $\left.1^{\text {pts }}\right)$ 17. The accompanying figure shows the graph of $y=$ $f(x)$. Then $\lim _{x \rightarrow 0} f(x)=$
(a) 0
(B) 1
(c) Does Not Exist
(d) -1

Solution:

since $\lim _{x \rightarrow 0^{-}} f(x)=1=\lim _{x \rightarrow 0^{+}} f(x)$, then $\lim _{x \rightarrow 0} f(x)=1$
(1 $\left.{ }^{\mathrm{pts}}\right)$ 18. $\lim _{x \rightarrow 3} \frac{x-3}{2-\sqrt{x+1}}=$
(a) 4
(b) $\frac{-1}{4}$
(c) 0
(d) -4

Solution:
A direct substation will give us I.F. 0/0. Now,

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x-3}{2-\sqrt{x+1}} & =\lim _{x \rightarrow 3} \frac{x-3}{2-\sqrt{x+1}} \cdot \frac{2+\sqrt{x+1}}{2+\sqrt{x+1}} \quad \text { Multiply by } 1=\frac{2+\sqrt{x+1}}{2+\sqrt{x+1}} \\
& =\lim _{x \rightarrow 3} \frac{(x-3)(2+\sqrt{x+1})}{2^{2}-(\sqrt{x+1})^{2}} \\
& =\lim _{x \rightarrow 3} \frac{(x-3)(2+\sqrt{x+1})}{4-(x+1)} \quad \text { Simplify } \\
& =\lim _{x \rightarrow 3} \frac{(x-3)(\sqrt{x+6}+3)}{-(x-3)} \\
& =\lim _{x \rightarrow 3}[-(2+\sqrt{x+1})] \\
& =-[2+\sqrt{3+1}] \\
& =-4 .
\end{aligned}
$$

$\left(1^{\text {pts }}\right)$ 19. The accompanying figure shows the graph of $y=$ $f(x)$. Then f is differentiable at $x=-1$.
(a) True
(b) False

Solution:

f is not differentiable at $x=-1$ since the the function is discontinuous at $x=-1$.
($\left.1^{\mathrm{pts}}\right)$ 20. If $y=x \sin x \csc x$, then $y^{\prime}=$
(ん) 1
(b) -1
(c) 0
(d) $-\cos x \csc x \cot x$

Solution:

$$
\begin{aligned}
y & =x \sin x \csc x \\
y & =x \sin x \frac{1}{\sin x} \\
y & =x \\
y^{\prime} & =1 .
\end{aligned}
$$

$\left(1^{\mathrm{pts}}\right)$
21. The function $f(x)=\sqrt{2-|x|}$ is continuous on
(a) $(-\infty,-2] \cup[2, \infty)$
(b) $[-2,2]$
(c) $(-\infty, 2) \cup(2, \infty)$
(d) $[2, \infty)$

Solution: Notice that $f(x)=\sqrt{2-|x|}$ is an even root function, then it is continuous on its domain which is the set of real number such that $2-|x| \geq 0$. Now

$$
\begin{aligned}
2-|x| \geq 0 & \Leftrightarrow-|x| \geq-2 \\
& \Leftrightarrow|x| \leq 2 \quad \Leftrightarrow-2 \leq x \leq 2 .
\end{aligned}
$$

Hence f is continuous on $[-2,2]$.
$\left(1^{\text {pts }}\right)$ 22. The accompanying figure shows the graph of $y=$ $f(x)$. Then $f^{\prime}(1)=$
(a) 0
(b) -1
(c) Undefined
(d) 1

Solution:

From the graph we can see that the tangent line to the graph of $y=f(x)$ at 1 is horizontal $(y=1)$ and hence its slope is zero. Now, since the first derivative is the slope of the tangent line to the graph at 2 then $f^{\prime}(1)=0$.
$\left(1^{\mathrm{pts}}\right)$
23. If $y=x^{2}+\frac{1}{x^{3}}-\sqrt{5}, \quad$ then $y^{\prime \prime \prime}=$
(a) $\frac{60}{x^{6}}+\frac{1}{2 \sqrt{5}}$
(C$) \frac{-60}{x^{6}}$
(c) $\frac{60}{x^{6}}$
(d) $\frac{-60}{x^{6}}-\frac{1}{2 \sqrt{5}}$

Solution:

$$
\begin{aligned}
y & =x^{2}+\frac{1}{x^{3}}-\sqrt{5} \\
y & =x^{2}+x^{-3}-\sqrt{5} \\
y^{\prime} & =2 x-3 x^{-4} \\
y^{\prime \prime} & =2+12 x^{-5} \\
y^{\prime \prime \prime} & =-60 x^{-6}=\frac{-60}{x^{6}} .
\end{aligned}
$$

($\left.1^{\text {pts }}\right)$
24. If $y=\frac{3 x+1}{x-1}, \quad$ then $y^{\prime}=$
(a) $\frac{2}{(x-1)^{2}}$
(b) $\frac{-2}{(x-1)^{2}}$
(c) $\frac{6 x-4}{(x-1)^{2}}$
(d) $\frac{-4}{(x-1)^{2}}$

Solution:

$$
\begin{aligned}
y^{\prime} & =\frac{\overbrace{(x-1)}^{\text {Bottom }} \overbrace{(3 x+1)^{\prime}}^{\text {Derivative of }} \text { Top }}{\overbrace{(3 x+1)}^{\text {Top }}} \overbrace{(x-1)^{\prime}}^{\text {Bottom }{ }^{2}} \\
& =\frac{(x-1)(3)-(3 x+1)(1)}{(x-1)^{2}} \\
& =\frac{3 x-3-(3 x+1)}{(x-1)^{2}} \\
& =\frac{3 x-3-3 x-1)}{(x-1)^{2}} \\
& =\frac{-4}{(x-1)^{2}} .
\end{aligned}
$$

$\left(1^{\mathrm{pts}}\right)$ 25. $\lim _{\theta \rightarrow 0} \cos \left(\frac{\pi \theta}{\sin (\theta)}\right)=$
(d) -1
(b) 0
(c) 1
(d) ∞

Solution:

$$
\begin{aligned}
\lim _{\theta \rightarrow 0} \cos \left(\frac{\pi \theta}{\sin (\theta)}\right) & =\cos \left(\lim _{\theta \rightarrow 0} \frac{\pi \theta}{\sin (\theta)}\right) \\
& =\cos \left(\frac{\pi \theta}{\sin (\theta)}\right) \\
& =\cos (\pi) \\
& =-1
\end{aligned}
$$

$\left(1^{\text {pts }}\right)$
26. If $y=x \sin x, \quad$ then $y^{\prime}=$
(a) $\cos x$
(b) $\sin x+1$
(c) $\sin x-x \cos x$
(d) $\sin x+x \cos x$

Solution:

$$
\begin{aligned}
y^{\prime} & =(x)^{\prime} \sin x+x(\sin x)^{\prime} \\
& =\sin x+x(\cos x) \\
& =\sin x+x \cos x
\end{aligned}
$$

$\left(1^{\mathrm{pts}}\right)$ 27. $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-x-6}=$
(a) $\frac{5}{6}$
(b) $\frac{6}{5}$
(c) $\frac{-6}{5}$
(d) 0

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-x-6} & =\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-x-6} \quad \text { A direct substation will give us I.F. 0/0 } \\
& =\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{(x-3)(x+2)} \quad \text { Factoring } x-3 \text { from denominator and numerator } \\
& =\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{(x-3)(x+2)} \\
& =\lim _{x \rightarrow 3} \frac{x+3}{x+2} \\
& =\frac{3+3}{3+2}=\frac{6}{5}
\end{aligned}
$$

(1 $\left.1^{\mathrm{pts}}\right)$ 28. $\lim _{x \rightarrow-2^{-}} \frac{x^{2}-1}{4 x+8}=$
(a) ∞
(b) 0
(c) Does Not Exist
(d) $-\infty$

Solution:

$$
\begin{array}{rlr}
\lim _{x \rightarrow-2^{-}} \frac{x^{2}-1}{4 x+8} & =\lim _{x \rightarrow-2^{-}} \frac{x^{2}-1}{2 x+4} & \text { A direct substation gives I.F. } 3 / 0 \\
& =\lim _{x \rightarrow-2^{-}} \frac{-x-1}{x+2} & \text { If } x<-2 \text { and near }-2, \text { then } x^{2}-1>0,4 x+8<0 . \\
& =\lim _{x \rightarrow-2^{-}} \frac{x^{2}-1}{4 x+8}=-\infty &
\end{array}
$$

$\left(1^{\mathrm{pts}}\right)$ 29. The curve $f(x)=\frac{x-2 x^{3}+1}{x^{3}-x+5}$ has a horizontal asymptote at
(C) $y=-2$
(b) $y=0$
(c) $y=5$
(d) $x=-2$

Solution:

To find the horizontal asymptote we take the limit as $x \rightarrow \pm \infty$ Note that both the numerator and the denominator $\rightarrow \pm \infty$, as $x \rightarrow \pm \infty$. To find this limit divided both the numerator and the denominator by the highest power of x in the denominator which is x^{3}. So,

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty} \frac{x-2 x^{3}+1}{x^{3}-x+5} & =\lim _{x \rightarrow \pm \infty} \frac{\frac{x-2 x^{3}+1}{x^{3}}}{\frac{x^{3}-x+5}{x^{3}}} \\
& =\lim _{x \rightarrow \pm \infty} \frac{\frac{1}{x^{2}}-2+\frac{1}{x^{3}}}{1-\frac{1}{x^{2}}+\frac{5}{x^{3}}} \\
& =\frac{0-2+0}{1-0+0}=-2
\end{aligned}
$$

Therefore $y=-2$ is a horizontal asymptote.
$\left(1^{\mathrm{pts}}\right)$
30. $\lim _{x \rightarrow 1} \frac{|x-3|-2}{x-1}=$
(a) 1
(b) Does Not Exist
(c) 0
(d) -1

Solution:
A direct substation gives I.F. $0 / 0$. Note that if $x>1$ or $x<1$ near(close) to 1 then $x-3<0 \Rightarrow|x-3|=-(x-3)$.

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{|x-3|-2}{x-1} & =\lim _{x \rightarrow 0} \frac{-(x-3)-2}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{-x+3-2}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{-x+1}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{-(x-1)}{x-1} \\
& =\lim _{x \rightarrow 1}(-1) \\
& =-1
\end{aligned}
$$

